ON AUTOMORPHISM GROUPS OF C*-ALGEBRAS

BY MI-SOO BAE SMITH

I. Introduction. Let X be a compact Hausdorff space and $\mathcal{L}(H)$ the algebra of all bounded operators on a Hilbert space H. $C(X; \mathcal{L}(H))$ is the C^* -algebra of all continuous $\mathcal{L}(H)$ -valued functions defined on X, with the sup-norm. The study of automorphisms of such algebras has been initiated by Kadison and Ringrose in [13, IV, Example d] where the case H finite dimensional is studied in some detail. A similar study of the case H infinite dimensional (and X a separable compact Hausdorff space) has been made by E. C. Lance [18] and independently by moi-même.

In the present work we study center-fixing automorphisms of $\mathfrak{A} = C(X; B)$, where X is an arbitrary compact Hausdorff space, and B a C^* -algebra. We introduce the notion of "locally-inner" automorphisms of C(X; B), by "localizing" the definition of inner automorphisms. The precise definition requires several preliminary properties of center-fixing automorphisms and is given in §III.

The locally-inner automorphisms form a subgroup of Aut (\mathfrak{A}), the automorphism group of \mathfrak{A} , which we denote by loc-Inn (\mathfrak{A}). By the definition of loc-Inn (\mathfrak{A}) we will have an inclusion loc-Inn (\mathfrak{A}) \subseteq CF (\mathfrak{A}), the center-fixing automorphism group of \mathfrak{A} . If H is finite dimensional, then loc-Inn ($C(X; \mathcal{L}(H)) = CF(C(X; \mathcal{L}(H)))$) [13]. For a general Hilbert space H we establish (Theorem 3.5) an isomorphism of topological groups

loc-Inn
$$(C(X; \mathcal{L}(H))) = C(X; Aut(\mathcal{L}(H)))$$

where $C(X; \operatorname{Aut}(\mathcal{L}(H)))$ denotes the group of continuous maps $f: X \to \operatorname{Aut}(\mathcal{L}(H))$. This occupies the major portion of §III.

With the aid of a theorem of Kallman [14], we find (Corollary 3.18) that CF (\mathfrak{A})=loc-Inn (\mathfrak{A}) when X is a *separable* compact Hausdorff space and \mathfrak{A} = $C(X; \mathcal{L}(H))$. Every inner automorphism is locally-inner and Inn (\mathfrak{A}), the inner automorphism group of \mathfrak{A} , is a normal subgroup of loc-Inn (\mathfrak{A}). As a consequence of the results of §III (Theorem 4.1) and a result of Kuiper [16] we obtain for infinite-dimensional H a natural isomorphism of groups

loc-Inn (
$$\mathfrak{A}$$
)/Inn (\mathfrak{A}) = $\hat{H}^2(X; \mathbb{Z})$,

where $\hat{H}^2(X; \mathbf{Z})$ denotes the 2nd Čech cohomology group of X with coefficients in

the ring of integers Z. When X is separable, combining the above results with those of Lance [18] we obtain (Corollary 4.2)

$$CF(\mathfrak{A}) = \pi(\mathfrak{A}) = loc-Inn(\mathfrak{A})$$

as a consequence. We also obtain for separable X the equality

Inn
$$(\mathfrak{A}) = \operatorname{Aut}_0(\mathfrak{A})$$
 (= the identity component of Aut (\mathfrak{A})).

These results overlap with those of Lance in [18].

In §V we discuss relations between the carefully ideal preserving automorphisms and CF (\mathfrak{A}) where \mathfrak{A} is $C(X; \mathbf{B})$. Specifically, when X is separable we obtain

$$\tau_0(\mathfrak{A}) = \pi(\mathfrak{A}) = \mathrm{CF}(\mathfrak{A})$$

where $\tau_0(\mathfrak{A})$ denotes the group of carefully ideal preserving automorphisms of \mathfrak{A} (compare the results of Lance in [17]).

The presentation below is an outgrowth of the author's Thesis submitted to Yale University in partial fullfillment of the requirements of the Ph.D. degree.

II. **Preliminaries.** In this paper it is assumed that the reader is familiar with the basic results of the theory of C^* -algebras and their *-representations as may be found in [20], early chapters of [2], [3] or [4]. Also those propositions for which no proofs are given are elementary and may be verified by the reader.

Definition and Conventions. Throughout this paper a C^* -algebra will always mean a C^* -algebra over the complex numbers C, with identity which is usually denoted by I.

If $\mathfrak A$ is a C^* -algebra an automorphism of $\mathfrak A$ is an isomorphism of complex vector spaces $\alpha \colon \mathfrak A \to \mathfrak A$ such that

- (1) $\alpha(A^*) = \alpha(A)^*$ for all $A \in \mathfrak{A}$,
- (2) $\alpha(AB) = \alpha(A)\alpha(B)$ for all $A, B \in \mathfrak{A}$,
- (3) $\alpha(I) = I$.

The set of all automorphisms of \mathfrak{A} is denoted by Aut (\mathfrak{A}); it is a group in a natural way, the group operation being a composition of mappings.

If S is a complex Banach space then L(S) denotes the algebra of all bounded linear operators on S. If $T \in L(S)$ we define

$$||T|| = \sup_{s \in S: ||s|| \le 1} ||T(s)||.$$

This defines a norm on $\mathcal{L}(S)$.

If $\mathfrak A$ is a C^* -algebra then $\mathfrak A$ is semisimple with unique topology (in the sense of [19]) and thus any automorphism of $\mathfrak A$ is continuous in the norm topology of $\mathfrak A$. Hence Aut $(\mathfrak A) \subset \mathscr L(\mathfrak A)$ and we may equip Aut $(\mathfrak A)$ with the relative topology. In this topology Aut $(\mathfrak A)$ becomes a topological group.

Note that any automorphism of $\mathfrak A$ is an isometry [6].

Definition of various subgroups of Aut (\mathfrak{A}). Let \mathfrak{A} be a C^* -algebra acting on a Hilbert space H. An automorphism $\alpha \in \operatorname{Aut}(\mathfrak{A})$ is said to be extendible if there is an automorphism $\bar{\alpha}$ of the weak operator closure \mathfrak{A}^- of \mathfrak{A} such that $\bar{\alpha}|_{\mathfrak{A}} = \alpha \colon \mathfrak{A} \to \mathfrak{A}$. An automorphism $\alpha \in \operatorname{Aut}(\mathfrak{A})$ is said to be spatial if there is a unitary operator U on H such that for all $A \in \mathfrak{A}$, $\alpha(A) = UAU^*$. $\alpha \in \operatorname{Aut}(\mathfrak{A})$ is said to be weakly-inner if it is spatial and U can be chosen in the weak operator closure of \mathfrak{A} .

An automorphism $\alpha \in \operatorname{Aut}(\mathfrak{A})$ is *inner* if there exists a unitary element $U \in \mathfrak{A}$ such that $\alpha(A) = UAU^*$ for all $A \in \mathfrak{A}$. Note that an inner automorphism of \mathfrak{A} is weakly-inner in any faithful *-representation of \mathfrak{A} .

Let $\mathfrak A$ be an abstract C^* -algebra. If φ is a faithful *-representation of $\mathfrak A$ on a Hilbert space, φ -Ext ($\mathfrak A$) denotes the group of those elements α of Aut ($\mathfrak A$) for which $\varphi \alpha \varphi^{-1}$ is extendible; $\sigma_{\varphi}(\mathfrak A)$ denotes the group of those elements α of Aut ($\mathfrak A$) for which $\varphi \alpha \varphi^{-1}$ is spatial; φ -Inn ($\mathfrak A$) denotes the group of those elements α of Aut ($\mathfrak A$) for which $\varphi \alpha \varphi^{-1}$ is weakly-inner. Let $\pi(\mathfrak A) = \bigcap_{\varphi} \varphi$ -Inn ($\mathfrak A$), where the intersection is taken over all faithful *-representations φ of $\mathfrak A$. $\pi(\mathfrak A)$ is called the permanently weakly-inner (or π -inner) automorphisms of $\mathfrak A$. The group of all inner automorphisms of $\mathfrak A$ is denoted by Inn ($\mathfrak A$). The connected component of $I \in \operatorname{Aut}(\mathfrak A)$ (in the uniform topology) is denoted by $\operatorname{Aut}_{\varphi}(\mathfrak A)$.

These subgroups of Aut (21) were defined and studied by Kadison and Ringrose in [13].

An automorphism $\alpha \in \text{Aut}(\mathfrak{A})$ is said to be *center-fixing* if α leaves the elements of the center $Z(\mathfrak{A})$ elementwise fixed; i.e. $\alpha(A) = A$ for all $A \in Z(\mathfrak{A})$.

PROPOSITION. Let $\mathfrak A$ be a C^* -algebra. Then the set of all center-fixing automorphisms of $\mathfrak A$ forms a subgroup of $\operatorname{Aut}(\mathfrak A)$. \square

The subgroup of Aut (\mathfrak{A}) consisting of all the center-fixing automorphisms of \mathfrak{A} is denoted by CF (\mathfrak{A}), and is referred to as the center-fixing automorphism group of \mathfrak{A} . Note that Inn (\mathfrak{A}) \subseteq CF (\mathfrak{A}).

Some results from the work of Kadison and Ringrose [13]. It is convenient to have available some of the results of [13] concerning inclusion relations between the subgroups of Aut (M) introduced above. The remainder of this section is devoted to a summary of the relevant facts from [13].

THEOREM A [13, THEOREM 7]. Let $\mathfrak A$ be a C^* -algebra and $\alpha \in \operatorname{Aut}(\mathfrak A)$ with $\|\alpha - I\|$ <2. Then α lies in a norm-continuous one parameter subgroup of $\operatorname{Aut}(\mathfrak A)$. Such subgroups generate $\operatorname{Aut}_0(\mathfrak A)$. Each element of $\operatorname{Aut}_0(\mathfrak A)$ is π -inner.

It follows from Theorem A that one has inclusions

$$\operatorname{Aut}_0(\mathfrak{A}) \subseteq \pi(\mathfrak{A}) \subseteq \varphi\operatorname{-Inn}(\mathfrak{A}) \subseteq \sigma_{\varphi}(\mathfrak{A}) \subseteq \varphi\operatorname{-Ext}(\mathfrak{A})$$

where φ is any faithful *-representation of $\mathfrak A$. Since $\operatorname{Aut}_0(\mathfrak A)$ contains an open ball with center I and radius 2 in $\operatorname{Aut}(\mathfrak A)$ it follows that each of $\pi(\mathfrak A)$, φ -Inn $(\mathfrak A)$, φ -Ext $(\mathfrak A)$ is also an open subgroup of $\operatorname{Aut}(\mathfrak A)$. Hence they are all closed too.

Furthermore, $\operatorname{Aut}_0(\mathfrak{A})$ and $\pi(\mathfrak{A})$ are normal subgroups of $\operatorname{Aut}(\mathfrak{A})$, while in general, φ -Inn (\mathfrak{A}) , $\sigma_{\varphi}(\mathfrak{A})$ and φ -Ext (\mathfrak{A}) are not [13, pp. 48–49 after Corollary 9].

The inner automorphism group Inn (\mathfrak{A}) of \mathfrak{A} is contained in $\pi(\mathfrak{A})$, and is a normal subgroup of Aut (\mathfrak{A}). Generally, it is not true that Aut₀ (\mathfrak{A}) is contained in Inn (\mathfrak{A}) [13, p. 49].

Various examples in [13] show that all possible equalities and inequalities among the above inclusion relations actually occur. The interesting results are as follows:

THEOREM B [13, COROLLARY 9]. If $\mathfrak A$ is a C^* -algebra with a faithful *-representation φ as a von Neumann algebra, then

Inn
$$(\mathfrak{A})$$
 = Aut₀ (\mathfrak{A}) = $\pi(\mathfrak{A})$ = φ -Inn (\mathfrak{A})

and each element of $\operatorname{Aut}_0(\mathfrak{A})$ lies on a norm-continuous one parameter subgroup of $\operatorname{Aut}(\mathfrak{A})$.

THEOREM C [13, IV, Example b]. Let $\mathfrak A$ be the C^* -algebra of compact operators on a separable Hilbert space with the identity operator I adjoined. (Thus every element $A \in \mathfrak A$ has the form aI + K, where $a \in C$ and K is a compact operator.) Then $\mathrm{Aut}_0(\mathfrak A) = \mathrm{Aut}(\mathfrak A) = \pi(\mathfrak A)$, and $\mathfrak A$ admits noninner permanently weakly-inner automorphisms, i.e. Inn $(\mathfrak A) \subseteq \pi(\mathfrak A)$. Since Inn $(\mathfrak A) = (I)$, $\mathfrak A$ also provides an example where $\mathrm{Aut}_0(\mathfrak A) \subseteq \mathrm{Inn}(\mathfrak A)$.

THEOREM D [13, IV, EXAMPLE d]. Let X be a compact Hausdorff space, \mathfrak{M}_n the C*-algebra of all $(n \times n)$ -matrices with complex entries and $\mathfrak{A} = C(X; \mathfrak{M}_n)$ the C*-algebra of all continuous functions from X to \mathfrak{M}_n . (The norm in \mathfrak{A} is the sup-norm, i.e. if $f \in C(X; \mathfrak{M}_n)$ then $||f|| = \sup_{x \in X} ||f(x)||$.) Then

$$CF(\mathfrak{A}) = \pi(\mathfrak{A}) = \varphi$$
-Inn(\mathbf{A})

and

$$\operatorname{Aut}_0\left(\mathfrak{A}\right)\subseteq\operatorname{Inn}\left(\mathfrak{A}\right)\subseteq\pi(\mathfrak{A}).$$

All the possible equality and inequality relations among the inclusions in Theorem D can actually occur for a suitable choice of X. For example, if $X = I^n$, the n-dimensional cell, then [13, p. 57]

$$\operatorname{Aut}_{0}\left(\mathfrak{A}\right)=\operatorname{Inn}\left(\mathfrak{A}\right)=\pi(\mathfrak{A}).$$

If $X = U(n)/S^1$, where U(n) is the unitary group in \mathfrak{M}_n , S^1 the circle group of diagonal matrices in U(n), then [13, p. 67] if $n \ge 3$,

$$\operatorname{Aut}_0\left(\mathfrak{A}\right)\neq\operatorname{Inn}\left(\mathfrak{A}\right)\neq\pi(\mathfrak{A}).$$

If $X = S^1$, the circle, then [13]

$$\operatorname{Aut}_{0}\left(\mathfrak{A}\right)\neq\operatorname{Inn}\left(\mathfrak{A}\right)=\pi(\mathfrak{A}).$$

If $X = RP(3) = U(2)/S^1$ the real projective 3-space, then [13, p. 59] Aut₀ (\mathfrak{A}) = Inn (\mathfrak{A}) $\neq \pi(\mathfrak{A}$).

Center-fixing automorphisms. Let $\mathfrak A$ be a C^* -algebra. As noted above the automorphisms of $\mathfrak A$ fixing the center of $\mathfrak A$ form a subgroup of Aut ($\mathfrak A$) denoted by CF ($\mathfrak A$). In this section some inclusion relations between CF ($\mathfrak A$) and other subgroups of Aut ($\mathfrak A$) will be discussed.

LEMMA 2.1. Let $\mathfrak A$ be a C^* -algebra and φ a faithful * -representation of $\mathfrak A$ on a Hilbert space H. Then

$$\varphi$$
-Inn $(\mathfrak{A}) \subseteq CF(\mathfrak{A})$.

As a consequence of Lemma 2.1 and the inclusions discussed above we have inclusions

$$\operatorname{Aut}_0(\mathfrak{A}) \subseteq \pi(\mathfrak{A}) \subseteq \varphi\operatorname{-Inn}(\mathfrak{A}) \subseteq \operatorname{CF}(\mathfrak{A}) \subseteq \operatorname{Aut}(\mathfrak{A})$$

and

Inn
$$(\mathfrak{A}) \subseteq \pi(\mathfrak{A}) \subseteq \varphi$$
-Inn $(\mathfrak{A}) \subseteq \operatorname{CF}(\mathfrak{A}) \subseteq \operatorname{Aut}(\mathfrak{A})$.

Thus CF (\mathfrak{A}) contains an open ball in Aut (\mathfrak{A}) with center I and radius 2. Thus CF (\mathfrak{A}) is open and a closed subgroup of Aut (\mathfrak{A}).

LEMMA 2.2. If
$$\mathfrak A$$
 is a C^* -algebra then CF $(\mathfrak A)$ is a normal subgroup of Aut $(\mathfrak A)$. \square

We will find it convenient to make use of tensor products of C^* -algebras in the remaining sections. We recall some of the relevant facts here.

Tensor products and cross-norms. If H and K are Hilbert spaces then we may introduce the Hilbert space tensor product $H \otimes K$ [2, p. 23], [19]. If $\mathfrak A$ and $\mathfrak B$ are C^* -algebras with *-representations $\varphi \colon \mathfrak A \to \mathscr L(H)$, $\psi \colon \mathfrak B \to \mathscr L(K)$ then we denote by $\varphi \otimes \psi$ the algebraic tensor product *-representation $\varphi \otimes \psi \colon \mathfrak A \otimes \mathfrak B \to \mathscr L(H \otimes K)$

$$(\varphi \otimes \psi)(A \otimes B)(\xi \otimes \eta) = \varphi(A)(\xi) \otimes \psi(B)(\eta),$$

where $A \in \mathfrak{A}$, $B \in \mathfrak{B}$, $\xi \in H$, $\eta \in K$.

THEOREM E (WULFSOHN [26, THEOREM 1]). Let $\mathfrak A$ and $\mathfrak B$ be C^* -algebras, φ , φ' faithful *-representations of $\mathfrak A$ on H, H' respectively, and ψ , ψ' faithful *-representations of $\mathfrak B$ on K and K' respectively. Then for any $A_i \in \mathfrak A$, $B_i \in \mathfrak B$

$$\left\|\sum_{i}\varphi(A_{i})\otimes\psi(B_{i})\right\|=\left\|\sum_{i}\varphi'(A_{i})\otimes\psi'(B_{i})\right\|$$

where the norms are the norms in $\mathcal{L}(H \otimes K)$ and $\mathcal{L}(H' \otimes K')$ respectively.

DEFINITION. Let $\mathfrak A$ and $\mathfrak B$ be C^* -algebras with faithful *-representations φ , ψ on H and K respectively. The completion of $\varphi(\mathfrak A)\otimes\psi(\mathfrak B)$ in the norm topology on $\mathscr L(H\otimes K)$ is denoted by $\mathfrak A\otimes^*\mathfrak B$.

REMARK. By Theorem E, $\mathfrak{A} \otimes^* \mathfrak{B}$ is independent of the choice of faithful *-representations φ and ψ .

In [27] Wulfsohn has shown that the cross-norm on $\mathfrak{A} \otimes^* \mathfrak{B}$ introduced above coincides with the α_0 -norm of Turumaru [26].

III. Locally inner automorphisms. Let X be a compact Hausdorff space and B be a Banach algebra over C. We denote by C(X; B) the sup-norm algebra of all continuous functions $f: X \to B$. If B is a C^* -algebra so is C(X; B) and if B has an identity so does C(X; B).

NOTATION. Let X be a compact Hausdorff space and B be a Banach algebra. If $B \in B$ we denote by $\tilde{B}: X \to B$ the constant function at $B \in B$. This is clearly continuous and thus $\tilde{B} \in C(X; B)$. The function $\tilde{A}: B \to C(X; B)$ imbeds B in C(X; B) in a natural way.

Let X be a compact Hausdorff space and B a C^* -algebra over C. We define a function

$$e: C(X) \otimes B \rightarrow C(X; B)$$

by

$$e\bigg(\sum_{i=1}^n f_i \otimes B_i\bigg)(x) = \sum_{i=1}^n f_i(x)B_i.$$

This function is continuous in the C^* -topology and extends to provide an isomorphism [18], [19], [21], [24]

$$e: C(X) \otimes^* B \rightarrow C(X; B)$$

of C^* -algebras.

This isomorphism will prove a useful technical tool for us in this section.

We introduce, and fix, throughout this section, the following notation:

NOTATION. X is a compact Hausdorff space;

H is a Hilbert space over C;

B denotes a C*-algebra;

C(X; B) is the sup-norm algebra of all continuous $f: X \to B$;

 $\mathfrak{A} = C(X; \mathbf{B});$

Aut (\mathfrak{A}) is the group of automorphisms of \mathfrak{A} with the uniform topology;

Aut (B) is the group of all automorphisms of B with the uniform topology;

 $C(X; \operatorname{Aut}(B))$ is the group of all continuous functions $X \to \operatorname{Aut}(B)$, under pointwise multiplication. We equip $C(X; \operatorname{Aut}(B))$ with the compact-open topology. It is a topological group.

We turn now to the definition of locally-inner automorphisms of \mathfrak{A} . This will require some preparation.

NOTATION. $e: X \times C(X; B) \to B$ is the evaluation mapping given by e(x, f) = f(x). If $x \in X$ we denote by

$$e_x: C(X; B) \rightarrow B$$

the mapping given by $e_x(f) = e(x, f)$.

PROPOSITION 3.1. The evaluation mapping $e: X \otimes C(X; \mathbf{B}) \to \mathbf{B}$ is continuous.

Proof. This follows from the fact that the norm topology contains the compact-open topology. See, for example, R. H. Fox, *Topologies for function spaces*, Bull. Amer. Math. Soc. **51** (1945), 429–432.

LEMMA 3.2. If $\alpha \in CF(\mathfrak{A})$ and $x \in X$, then $\alpha(\ker e_x) \subseteq \ker e_x$.

Proof. We will use the tensor product representation $C(X; \mathbf{B}) = C(X) \otimes^* \mathbf{B}$. Under this identification the evaluation mapping e_x is given by the extension of

$$e_x: C(X) \otimes \mathbf{B} \to \mathbf{B} \mid e_x \left(\sum_i f_i \otimes B_i \right) = \sum_i f_i(x) B_i.$$

Let \mathfrak{M} be the maximal two sided ideal in C(X) determined by $x \in X$, i.e. $\mathfrak{M} = \{ f \in C(X) \mid f(x) = 0 \}$. \mathfrak{M} is again a C^* -algebra, albeit without identity. Thus $\mathfrak{M} \otimes^* \mathbf{B}$ is defined and $\mathfrak{M} \otimes^* \mathbf{B} = C(X) \otimes^* \mathbf{B}$ is a two sided ideal. Direct computation shows that $\mathfrak{M} \otimes^* \mathbf{B} = \ker e_x$.

Suppose $M_i \in \mathfrak{M}$, $B_i \in \boldsymbol{B}$, i = 1, 2, ..., n. Then

$$\alpha\left(\sum_{i=1}^{n} M_{i} \otimes B_{i}\right) = \sum_{1}^{n} \alpha(M_{i} \otimes B_{i}) = \sum_{1}^{n} \alpha[(M_{i} \otimes I)(I \otimes B_{i})]$$

$$= \sum_{1}^{n} \alpha(M_{i} \otimes I)\alpha(I \otimes B_{i})$$

$$= \sum_{1}^{n} (M_{i} \otimes I)\alpha(I \otimes B_{i}),$$

since α is center-fixing and $Z(C(X) \otimes^* B) = C(X) \otimes I$, and $\mathfrak{M} \otimes I \subseteq C(X) \otimes I$. Applying the evaluation map to both sides of the above equality then gives

$$e_x \alpha \left(\sum_{i=1}^n M_i \otimes B_i\right) = \sum_{i=1}^n M_i(x) e_x(\alpha(I \otimes B_i)) = 0,$$

since $M_i \in \mathfrak{M}$. Since the elements of the form $\sum_{i=1}^n M_i \otimes B_i$, for finite n > 0, are dense in $\mathfrak{M} \otimes^* B = \ker e_x$ and α , e_x are continuous with respect to the *-topology on $C(X) \otimes^* B$, it follows that $e_x(\alpha(A)) = 0$ for any $A \in \mathfrak{M} \otimes^* B = \ker e_x$, and thus $\alpha(\ker e_x) \subset \ker e_x$, as was to be shown. \square

REMARK. Let S be a closed subspace of X. If $f: S \to C$ is any continuous function then by Tietze's extension theorem there exists an extension of $f, F: X \to C$.

The inclusion $S \hookrightarrow X$ induces by restriction a homomorphism of C^* -algebras (notice it is norm decreasing)

$$\rho: C(X; \mathbf{B}) \to C(S; \mathbf{B}).$$

Using the tensor product identifications we see that ρ is onto. For suppose $f_i \in C(S)$, $B_i \in B$, $i=1,\ldots,n$. Choose extensions $F_i \in C(X)$ such that $F_i|_S = f_i$, $i=1,\ldots,n$. Then

$$\rho\left(\sum_{i}F_{i}\otimes B_{i}\right)=\sum_{i}f_{i}\otimes B_{i}.$$

Recall ρ is continuous with respect to the *-topology, C(X; B) is complete, and the elements of the form $\sum_{i=1}^{n} f_i \otimes B_i$ are dense in $C(S) \otimes *B$. It follows that ρ is onto as claimed.

Thus given $f: S \to B$ there exists an extension $F: X \to B$. If F' is another such extension then $F - F'|_S: S \to B$ is the constant function at $0 \in B$. Thus for any $s \in S$ and $\alpha \in CF(C(X; B)), (F - F')(s) = 0$. Therefore $\alpha(F)|_S = \alpha(F')|_S: S \to B$.

DEFINITION. If $\alpha \in CF(\mathfrak{A})$ and S is a closed subspace of X define $\alpha|_S: C(S; \mathbf{B}) \to C(S; \mathbf{B})$ by

$$\alpha|_{S}(f)(x) = \alpha(F)(x)$$

where $F: X \to B$ is any extension of f such that $F \in \mathfrak{A}$. This is well defined by the above remark.

PROPOSITION 3.3. Let X be a compact Hausdorff space, $S \subseteq X$ a closed subspace. Let **B** be a C^* -algebra, and $\alpha \in CF(C(X; \mathbf{B}))$. Then

$$\alpha|_{S}: C(S; \mathbf{B}) \rightarrow C(S; \mathbf{B}),$$

is a center-fixing automorphism of C(S; B).

If $\rho: C(X; \mathbf{B}) \to C(S; \mathbf{B})$ is the homomorphism of C^* -algebras given by restriction then the diagram

$$C(X; \mathbf{B}) \xrightarrow{\alpha} C(X; \mathbf{B})$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho}$$

$$C(S; \mathbf{B}) \xrightarrow{\alpha|_{S}} C(S; \mathbf{B})$$

is commutative. Thus

$$\alpha|_S: \mathrm{CF}\left(C(X;\mathbf{B})\right) \to \mathrm{CF}\left(C(S;\mathbf{B})\right)$$

is a continuous homomorphism of topological groups.

Proof. The verifications are all routine. \Box

We introduce now a subgroup of Aut (A) that will be of interest throughout the remainder of this paper.

NOTATION. If X is a topological space and $S \subseteq X$ is a subspace, then the closure of S in X is denoted by \overline{S} .

DEFINITION. Let X be a compact Hausdorff space, B a C^* -algebra, and $\mathfrak{A} = C(X; B)$. If $\alpha \in CF(\mathfrak{A})$ then α is locally-inner iff there exists an open covering S_1, \ldots, S_N of X such that $\alpha|_{S_i}$ is inner, $i = 1, \ldots, N$. The set of all locally inner automorphisms is denoted by loc-Inn (\mathfrak{A}) .

PROPOSITION 3.4. Let X be a compact Hausdorff space, B a C^* -algebra and $\mathfrak{A} = C(X; B)$. Then loc-Inn (\mathfrak{A}) is a subgroup of $Aut(\mathfrak{A})$ and

$$\operatorname{Inn}(\mathfrak{A}) \subseteq \operatorname{loc-Inn}(\mathfrak{A}) \subseteq \operatorname{CF}(\mathfrak{A}).$$

Proof. If $\alpha, \beta \in \text{loc-Inn}(\mathfrak{A})$ then there exist open covers $\{S_1, \ldots, S_N\}, \{T_1, \ldots, T_M\}$ of X with $\alpha|_{S_i}$, $i=1,\ldots,N$, $\beta|_{T_j}$, $j=1,\ldots,M$, inner. It then follows that $\beta^{-1}|_{T_j}$, $j=i,\ldots,M$, is inner. Let $V_{1,1},\ldots,V_{N,M}$ be the open cover of X given by $V_{i,j}=S_i\cap T_j$. It is immediate that $\alpha\beta^{-1}|_{V_{i,j}}$ is inner, and thus loc-Inn (\mathfrak{A}) is a subgroup of Aut (\mathfrak{A}). \square

The main result of this section is:

THEOREM 3.5. Let X be a compact Hausdorff space, B a C^* -algebra, and $\mathfrak{A} = C(X; B)$. Then there exists a natural isomorphism of topological groups

$$\sim$$
: loc-Inn $(\mathfrak{A}) \rightarrow C(X; \operatorname{Aut}(B))$.

The proof of Theorem 3.5 will occupy most of the remainder of this section. DEFINITION. Let $\alpha \in CF(\mathfrak{A})$ and $x \in X$. Define a function $\tilde{\alpha}_x : \mathbf{B} \to \mathbf{B}$ by $\tilde{\alpha}_x(\mathbf{B}) = \alpha(\tilde{\mathbf{B}})(x)$.

Thus for $\alpha \in CF(\mathfrak{A})$ and $x \in X$, $\tilde{\alpha}_x$ is the function given by the composition

$$B \xrightarrow{\sim} C(X; B) \xrightarrow{\alpha} C(X; B) \xrightarrow{e_x} B.$$

LEMMA 3.6. If $\alpha \in CF(\mathfrak{A})$ and $x \in X$, then $\tilde{\alpha}_x \colon \mathbf{B} \to \mathbf{B}$ is a continuous *-preserving linear map. \square

LEMMA 3.7. If
$$\alpha, \beta \in CF(\mathfrak{A})$$
 and $x \in X$, then $((\beta \alpha)^{\sim})_x = \tilde{\beta}_x \cdot \tilde{\alpha}_x$.

Proof. For the sake of clarity in writing compositions of mappings we introduce the notation $\rho: \mathbf{B} \to C(X; \mathbf{B})$ for the imbedding $\tilde{}: \mathbf{B} \to C(X; \mathbf{B})$.

From the definition we then have $((\beta \cdot \alpha)^{\sim})_x = e_x \beta \alpha \rho$ and $\tilde{\beta}_x \cdot \tilde{\alpha}_x = e_x \beta \rho e_x \alpha \rho$. Note that $e_x \rho : \mathbf{B} \to \mathbf{B}$ is the identity map, and thus $e_x \alpha \rho = e_x \rho e_x \alpha \rho$.

Let $B \in B$. Then

$$\alpha \rho(B) - \rho e_x \alpha \rho(B) \in \ker e_x$$
.

Since $\beta \in CF(\mathfrak{A})$ it follows from Lemma 3.2 that $\beta \ker e_x \subset \ker e_x$. Therefore

$$\beta \alpha \rho(B) - \beta \rho e_x \alpha \rho(B) \in \ker e_x$$
.

Hence

$$e_r \beta \alpha \rho(B) - e_r \beta \rho e_r \alpha \rho(B) = 0$$

i.e.

$$e_x \beta \alpha \rho(B) = e_x \beta \rho e_x \alpha \rho(B)$$

for all $B \in B$. From the definition of \sim this means

$$((\beta\alpha)^{\sim})_x(B) = \tilde{\beta}_x \cdot \tilde{\alpha}_x(B)$$

for all $B \in B$, and thus $((\beta \alpha)^{\sim})_x = \tilde{\beta}_x \cdot \tilde{\alpha}_x$ as was to be shown. \square

PROPOSITION 3.8. If $\alpha \in CF(\mathfrak{A})$ and $x \in X$ then $\tilde{\alpha}_x \colon \mathbf{B} \to \mathbf{B}$ is an automorphism of \mathbf{B} .

Proof. It is a routine task to show that $\tilde{\alpha}_x$ is multiplicative. From Lemma 3.7 it follows that

$$(\tilde{\alpha}^{-1})_x = (\tilde{\alpha}_x)^{-1}.$$

Then the proposition follows from Lemma 3.6.

DEFINITION. If $\alpha \in CF(\mathfrak{A})$ let $\tilde{\alpha} \colon X \to Aut(B)$ be the function defined by $\tilde{\alpha}(x) = \tilde{\alpha}_x$.

PROPOSITION 3.9. Let X, B, $\mathfrak A$ be as above. Then for any $\alpha \in \operatorname{CF}(\mathfrak A)$, $\tilde \alpha \colon X \to \operatorname{Aut}(B)$ is strongly continuous.

Proof. Let $\{x_{\lambda} \mid \lambda \in \Lambda\}$ be a convergent net in X with limit x. Then for any $B \in B$, $\{(x_{\lambda}, \tilde{B}) \mid \lambda \in \Lambda\}$ is a convergent net in $X \times C(X; B)$ with limit (x, \tilde{B}) . From the definition of $\tilde{\alpha}$ we have

$$\lim_{\lambda \in \Lambda} \tilde{\alpha}(x_{\lambda})(B) = \lim_{\lambda \in \Lambda} e(x_{\lambda}, \alpha(\tilde{B})) = e(x, \alpha(\tilde{B})) = \tilde{\alpha}(x)(B),$$

since $e: X \times C(X; \mathbf{B}) \rightarrow \mathbf{B}$ is continuous. Thus for each $\mathbf{B} \in \mathbf{B}$

$$\lim_{\lambda \in \Lambda} \tilde{\alpha}(x_{\lambda})(B) = \tilde{\alpha}(x)(B).$$

Thus α takes convergent nets in X into strongly convergent nets in B and hence $\tilde{\alpha}$ is strongly continuous. \square

Since the strong operator and uniform topologies of Aut(B) coincide when H is finite dimensional we obtain

COROLLARY 3.10. Let X be a compact Hausdorff space, H a finite-dimensional Hilbert space, $B \subseteq \mathcal{L}(H)$ and $\mathfrak{A} = C(X; B)$. Then for any $\alpha \in CF(\mathfrak{A})$, $\tilde{\alpha} \colon X \to Aut(B)$ is continuous in the uniform topology. \square

If the dimension of H is not finite we have not succeeded in showing $\tilde{\alpha}: X \to \operatorname{Aut}(B)$ is continuous for all $\alpha \in \operatorname{CF}(\mathfrak{A})$, in general. But, when X is separable and $B = \mathcal{L}(H)$ then we may establish the continuity of $\tilde{\alpha}$ with the aid of the following theorem of Kallman [14].

THEOREM F (KALLMAN). Let **R** be any von Neumann algebra, φ_n elements of the automorphism group of **R** (n>0) such that $\|\varphi_n(T)-T\|\to 0$ $(n\uparrow\infty)$ for all $T\in \mathbf{R}$. Then $\|\varphi_n-I\|\to 0$ $(n\uparrow\infty)$.

THEOREM 3.11. Suppose that X is a separable compact Hausdorff space, $\mathbf{B} = \mathcal{L}(\mathbf{H})$ for a Hilbert space \mathbf{H} , and $\mathfrak{A} = C(X; \mathbf{B})$. If $\alpha \in \mathrm{CF}(\mathfrak{A})$ then $\tilde{\alpha} \colon X \to \mathrm{Aut}(\mathbf{B})$ is continuous in the uniform operator topology.

Proof. As X is separable it will suffice to show that for each convergent sequence $\{x_n \mid x_n \in X\}$ with limit $x \in X$ we have

$$\lim_{n\to\infty} \|\tilde{\alpha}(x_n) - \tilde{\alpha}(x)\| = 0.$$

By replacing $\tilde{\alpha}$ by $\tilde{\alpha}(x)^{-1}\tilde{\alpha}$ we are reduced to considering the case where $\tilde{\alpha}(x)=I$. By Proposition 3.9 we have

$$\lim_{n\to\infty} \|\tilde{\alpha}(x_n)(T)-T\|=0$$

for all $T \in B$. Applying Kallman's theorem to the von Neumann algebra $B = \mathcal{L}(H)$ now yields the desired conclusion. \square

Attempts to extend Theorem 3.11 to arbitrary C^* -algebras would seem to depend on extending Kallman's theorem to a more general family of C^* -algebras than $\mathcal{L}(H)$.

CONJECTURE. Let X be a compact Hausdorff space and H a Hilbert space, $B = \mathcal{L}(H)$ and $\mathfrak{A} = C(X; B)$. Then for any $\alpha \in CF(\mathfrak{A})$, $\tilde{\alpha}: X \to Aut(B)$ is continuous in the uniform topology.

While we are unable to settle the continuity of ~ in general we do have:

THEOREM 3.12. Let X be a compact Hausdorff space, H a Hilbert space, $B = \mathcal{L}(H)$ and $\mathfrak{A} = C(X; B)$. If $\alpha \in CF(\mathfrak{A})$ then $\tilde{\alpha} \colon X \to Aut(B)$ is continuous in the uniform operator topology iff $\alpha \in Ioc-Inn(\mathfrak{A})$.

REMARK. It follows from Theorem 3.11 and Corollary 3.10 that $CF(\mathfrak{A}) = loc-Inn(\mathfrak{A})$ when the dimension of H is finite. We conjecture that this equality holds with no restriction on H.

The proof of Theorem 3.12 will require some preparation.

NOTATION. \mathcal{U} is the set of unitary elements of B. It is a topological group when equipped with the induced topology from B.

Let $\omega : \mathcal{U} \to \text{Aut } (B)$ be the function defined by $\omega(U) = UBU^*$ for all $B \in B$.

It follows from Kaplansky's theorem [3], [4] that $\omega : \mathcal{U} \to \operatorname{Aut}(B)$ is a surjection of abstract groups. The kernel of ω consists of those unitary elements U such that $UBU^* = B$ for all $B \in B$, i.e. $\ker \omega = \mathcal{U} \cap Z(B)$. Since $Z(B) = C \cdot I$ it follows that $\ker \omega = S^1 I$, where S^1 is the circle group.

Combining these observations with some calculations we obtain:

PROPOSITION 3.13. The homomorphism $\omega: \mathcal{U} \to \operatorname{Aut}(B)$ is a continuous-open surjection and induces an isomorphism of topological groups $\bar{\omega}: \mathcal{U}/S^1 \to \operatorname{Aut}(B)$.

Proof. The fact that ω is continuous is obvious. To see that ω is open one may employ Lemma 5 of [13] or the following more elementary computation due to C. L. Fefferman.

LEMMA. Let $U \in \mathcal{U}$. Then there exists $t \in S^1$ such that

$$||tU-I|| \leq 2\pi ||\omega(U)-I||.$$

Proof of Lemma. Let $U \in \mathcal{U}$. By the spectral theorem we have the spectral representation

$$U=\int_0^{2\pi}e^{i\theta}\ dE_{\theta}.$$

Let $e^{i\theta_1}$, $e^{i\theta_2} \in \sigma(U)$. Let $\varepsilon > 0$ and choose ε -eigenvectors x, y corresponding to $e^{i\theta_1}$, $e^{i\theta_2}$ respectively. Where we mean that x is an ε -eigenvector if

$$|Ux-e^{i\theta_1}x|<\varepsilon|x|,$$

where | | denotes the norm in *H*. We may assume that |x| = 1 = |y|.

Let A be the linear operator on H defined by Az = (z, x)y, $z \in H$. Then Ax = y, and

$$U^*x = U^{-1}x = e^{-i\theta_1}x + z$$

where $|z| \to 0$ as $\varepsilon \to 0$.

$$AU^*x = e^{-i\theta_1}Ax + Az = e^{-i\theta_1}y + Az,$$

 $UAU^*x = e^{-i\theta_1}Uy + w = e^{i(\theta_2 - \theta_1)}y + w,$

where $|w| \to 0$ as $\varepsilon \to 0$.

By definition

$$\begin{split} \|\omega(U) - I\| &= \sup_{\|B\| \le 1} \|UBU^* - B\| \\ &= \sup_{\|B\| \le 1} \sup_{\|v\| \le 1} |UBU^{-1}v - Bv|. \end{split}$$

Therefore

$$\begin{split} \|\omega(U) - I\| &\ge |UAU^*x - Ax| \\ &= |e^{i(\theta_2 - \theta_1)}Ax - Ax + w| \\ &\ge |e^{i(\theta_2 - \theta_1)} - 1| |Ax| - |w| \\ &= |e^{i(\theta_2 - \theta_1)} - 1| - |w| \\ &= |e^{i\theta_2} - e^{i\theta_1}| |e^{-i\theta_1}| - |w| \\ &= |e^{i\theta_2} - e^{i\theta_1}| - |w|. \end{split}$$

Thus

(*)
$$\|\omega(U) - I\| \ge |e^{i\theta_2} - e^{i\theta_1}| - |w|.$$

Denote by $\Delta(U)$ the diameter of the spectrum of U, i.e.

$$\Delta(U) = \sup_{\exp(i\theta), \exp(i\theta') \in \sigma(U)} |e^{i\theta} - e^{i\theta'}|.$$

Taking the sup of both sides in (*) gives

$$\|\omega(U)-I\| \geq \Delta(U)-\eta$$

for any $\eta > 0$. Therefore

$$\|\omega(U)-I\| \geq \Delta(U).$$

On the other hand, let $t = e^{i\theta_0} \in \sigma(U)$. Then

$$||U-tI|| = \left| \int_0^{2\pi} (e^{i\theta} - e^{i\theta}) dE_{\theta} \right|$$

$$\leq 2\pi \sup_{\exp(i\theta)\in\sigma(U)} |e^{i\theta} - e^{i\theta}|$$

$$\leq 2\pi\Delta(U).$$

Thus there exists $t \in \sigma(U) \subseteq S^1$, with

$$||tU-I|| = ||U-tI|| \le 2\pi\Delta(U)$$

$$\le 2\pi||\omega(U)-I||. \quad \Box$$

With the aid of this lemma we obtain the openness of ω as follows. Since ω is a homomorphism it suffices to show that ω is open at *I*. Let

$$N_{\varepsilon} = \{U \in \mathcal{U} \mid ||U - I|| < \varepsilon\}$$

be a basic open neighbourhood of $I \in \mathcal{U}$. We wish to exhibit a small open neighbourhood of $I \in \text{Aut}(B)$ contained in $\omega(N_s)$. Consider the open set

$$\mathcal{O}_{\varepsilon} = \{T \in \text{Aut}(\mathbf{B}) \mid ||T - I|| < \varepsilon/3\pi\}.$$

Let $T \in \mathcal{O}_{\varepsilon}$. There exists $U \in \mathcal{U}$ such that $\omega(U) = T$, as we remarked above. By the Lemma above there exists $t \in S^1$ such that

$$||tU-I|| \leq 2\pi ||\omega(U)-I|| = 2\pi ||T-I|| < \varepsilon.$$

But $\omega(tU) = \omega(U)$. Therefore $T \in \omega(N_{\varepsilon})$. Hence $\mathcal{O}_{\varepsilon} \subset \omega(N_{\varepsilon})$ as required.

Thus the induced isomorphism $\bar{\omega} : \mathcal{U}/S^1 \to \operatorname{Aut}(B)$ is an isomorphism of topological groups, where \mathcal{U}/S^1 is equipped with the quotient topology. \square

NOTATION. If X is a compact Hausdorff space and G is a topological group we denote by C(X, G) the group of all continuous functions $X \to G$. The group operation is the pointwise product. We equip C(X, G) with the compact-open topology making it into a topological group.

COROLLARY 3.14. Let X be a compact Hausdorff space, **H** a Hilbert space and $\mathbf{B} = \mathcal{L}(\mathbf{H})$. Then ω induces a natural isomorphism of topological groups

$$\omega_*: C(X; \mathscr{U}/S^1) \xrightarrow{\cong} C(X, \operatorname{Aut}(B)).$$

Recollections from algebraic topology. We assume that the reader is familiar with basic ideas of fiber bundle theory [11, pp. 39-41], [23, pp. 432-437], [24, Part I]. The following fundamental property of principal G-bundles will be used later.

COVERING HOMOTOPY THEOREM [23, THEOREM 7.2.6] OR [24, THEOREM 11.3]. Let G be a topological group and (E, μ) a principal G-bundle. Let X be a topological space and suppose given

- (1) $f_t: X \to E/G$, $t \in [0, 1]$ a homotopy class of mappings, and
- (2) $f_0: X \to E$ a map such that $p\tilde{f}_0 = f_0$. Then there exists a homotopy $\tilde{f}_t: X \to E$, $t \in [0, 1]$, of \tilde{f}_0 , such that the following diagram commutes for all $t \in [0, 1]$, i.e. $p\tilde{f}_t = f_t$ for all $t \in [0, 1]$.

Let H be a (complex) Hilbert space, $B = \mathcal{L}(H)$ and \mathcal{U} the unitary elements in B. Then

$$p: \mathcal{U} \to \mathcal{U}/S^1$$

is a principal S^1 -bundle, where $S^1 = Z(\mathcal{U})$ acts on \mathcal{U} by left translation [11, p. 41].

LEMMA 3.15. Let X be a compact Hausdorff space, B a C^* -algebra. Then an element $f \in C(X; B)$ is unitary iff f(x) is unitary in B for all $x \in X$. \square

PROPOSITION 3.16. Let X be a compact Hausdorff space, \mathbf{H} a Hilbert space, $\mathbf{B} = \mathcal{L}(\mathbf{H})$ and $\mathfrak{A} = C(X; \mathbf{B})$. Then $\alpha \in \operatorname{Aut}(\mathfrak{A})$ is inner iff there exists a map $\hat{\alpha} \colon X \to \mathcal{U}$ such that $\omega \hat{\alpha} = \tilde{\alpha} \colon X \to \operatorname{Aut}(\mathbf{B})$.

Proof. Suppose that α is inner. Then from Lemma 3.15 it follows that there exists $\hat{\alpha} \in \mathfrak{A}$, $\hat{\alpha}: X \to \mathcal{U}$ such that $\alpha(f) = \hat{\alpha}f\hat{\alpha}^*$ for all $f \in C(X; B)$. Let $B \in B$ and $x \in X$. Then from the definition of $\tilde{\alpha}$ we have

$$\tilde{\alpha}(x)(B) = \alpha(\tilde{B})(x) = \hat{\alpha}(x)\tilde{B}(x)\hat{\alpha}^*(x) = \hat{\alpha}(x)B\hat{\alpha}(x)^*.$$

Thus for each $x \in X$ the automorphism $\tilde{\alpha}(x) \in \operatorname{Aut}(B)$ agrees with the inner automorphism $B \to \hat{\alpha}(x)B\hat{\alpha}(x)^*$. Recalling our identification $\bar{\omega} : \mathscr{U}/S^1 \cong \operatorname{Aut}(B)$ this means that the diagram

$$\begin{array}{ccc}
& & & & & & \\
& & & & & & \\
X & & & & & \\
X & & & & & \\
\end{array}$$

$$\begin{array}{ccc}
\tilde{a} & & & & \\
& & & & \\
& & & & \\
X & & & & \\
\end{array}$$

$$\begin{array}{cccc}
\tilde{a} & & & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{cccc}
\tilde{a} & & & \\
& & & \\
\end{array}$$

$$\begin{array}{cccc}
\tilde{a} & & & \\
& & & \\
\end{array}$$

$$\begin{array}{cccc}
\tilde{a} & & & \\
& & & \\
\end{array}$$

$$\begin{array}{cccc}
\tilde{a} & & \\
\end{array}$$

$$\begin{array}{ccccc}
\tilde{a} & & \\
\end{array}$$

$$\begin{array}{cccccc}
\tilde{a} & & \\
\end{array}$$

$$\begin{array}{ccccc}
\tilde{a} & & \\
\end{array}$$

$$\begin{array}{cccccc}
\tilde{a} & & \\
\end{array}$$

$$\begin{array}{ccccccc}
\tilde{a} & & \\
\end{array}$$

$$\begin{array}{ccccc}
\tilde{a} & & \\
\end{array}$$

$$\begin{array}{cccccc}
\tilde{a} & & \\
\end{array}$$

$$\begin{array}{ccccccc}
\tilde{a}$$

commutes, i.e. $\omega \hat{\alpha} = \tilde{\alpha}$.

Conversely, suppose that there exists $\hat{\alpha}: X \to \mathcal{U}$ such that $\omega \hat{\alpha} = \tilde{\alpha}: X \to \text{Aut } (B)$. Define an automorphism

$$\beta: \mathfrak{A} \to \mathfrak{A} \mid \beta(f)(x) = \hat{\alpha}(x)f(x)\hat{\alpha}(x)^*.$$

This is the inner automorphism of \mathfrak{A} determined by $\hat{\alpha} \in C(X, B) = \mathfrak{A}$.

We assert that $\beta = \alpha$. For suppose that $f \in C(X, B)$. Let $x \in X$. Then $e_x(f - (f(x))^{\sim})$ = 0. Therefore since α , $\beta \in CF(\mathfrak{A})$ it follows from Lemma 3.2 that

$$e_x(\alpha f - \alpha((f(x)^{\sim}))) = 0$$

and

$$e_x(\beta f - \beta((f(x))^{\sim})) = 0.$$

Thus

$$(\alpha f)(x) = \alpha((f(x))^{\sim})(x) = \tilde{\alpha}(x)(f(x)),$$

$$(\beta f)(x) = \beta((f(x))^{\sim})(x) = \tilde{\beta}(x)(f(x)).$$

Now β being inner we have by direct computation (compare above) that

$$\tilde{\beta}(x)(f(x)) = \hat{\alpha}(x)f(x)\hat{\alpha}(x)^*.$$

But by hypothesis

$$\hat{\alpha}(x)f(x)\hat{\alpha}(x)^* = \tilde{\alpha}(x)(f(x)).$$

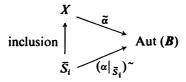
Therefore, combining these equalities yields

$$(\alpha f)(x) = \tilde{\alpha}(x)(f(x)) = \hat{\alpha}(x)f(x)\hat{\alpha}(x)^*$$
$$= \tilde{\beta}(x)(f(x)) = (\beta f)(x).$$

Hence $(\alpha f)(x) = (\beta f)(x)$ for all $x \in X$ and thus $\alpha f = \beta f$. Since $f \in C(X, B)$ was arbitrary it follows that $\alpha f = \beta f = \hat{\alpha} f \hat{\alpha}^*$ for all $f \in C(X, B)$ and hence α is inner. \square

Proof of Theorem 3.12. Suppose that $\alpha \in CF(\mathfrak{A})$ is locally inner. Let S_1, \ldots, S_N be an open cover of X such that $\alpha|_{S_i}$ is inner, $i=1,\ldots,N$.

From Proposition 3.3 it follows that we have a commutative diagram



and thus $\tilde{\alpha}|_{\bar{S}_i} = (\alpha|_{\bar{S}_i})^{\sim}$. Since $\alpha|_{\bar{S}_i}$ is an inner automorphism of $C(\bar{S}_i, B)$ it follows from Proposition 3.16 that there is a continuous function $(\alpha|_{\bar{S}_i})^{\wedge} : \bar{S}_i \to \mathcal{U}$ such that the diagram

$$(\alpha|_{\overline{S_i}}) \widehat{\longrightarrow} \psi$$

$$\overline{S_i} \xrightarrow{(\alpha|_{\overline{S_i}})^{\sim}} \operatorname{Aut}(B)$$

commutes. Thus $(\alpha|_{S_i})^{\sim}: \overline{S_i} \to \operatorname{Aut}(B)$ is the composition of two continuous maps and hence is continuous. Therefore $\tilde{\alpha}|_{S_i}: S_i \to \operatorname{Aut}(B)$ is continuous. Since S_1, \ldots, S_N is an open cover of X and $\tilde{\alpha}|_{S_1}, \ldots, \tilde{\alpha}|_{S_N}$ are continuous, it follows that $\tilde{\alpha}$ is continuous.

Conversely suppose that $\tilde{\alpha}: X \to \operatorname{Aut}(B)$ is continuous. Under the identification $\bar{\omega}: \mathcal{U}/S^1 = \operatorname{Aut}(B)$ the mapping $\omega: \mathcal{U} \to \operatorname{Aut}(B)$ becomes a locally trivial fiber bundle. Thus there exists an open cover $\{\mathcal{O}_{\lambda} \mid \lambda \in \Lambda\}$ of $\operatorname{Aut}(B)$ and continuous functions $s_{\lambda}: \mathcal{O}_{\lambda} \to \mathcal{U}$ such that $\omega s_{\lambda} = 1: \mathcal{O}_{\lambda} \to \mathcal{O}_{\lambda}$.

Since $\tilde{\alpha}$ is continuous $\{\tilde{\alpha}^{-1}\mathcal{O}_{\lambda} \mid \lambda \in \Lambda\}$ is an open cover of X. Since X is compact Hausdorff we may select a finite open covering S_1, \ldots, S_N of X with $\bar{S}_i \subset \tilde{\alpha}^{-1}\mathcal{O}_{\lambda_i}$, $i=1,\ldots,N$, for some $\lambda_1,\ldots,\lambda_N\in\Lambda$. (This process is called shrinking the cover.) Therefore $\tilde{\alpha}(\bar{S}_i)\subset\mathcal{O}_{\lambda_i}$.

Define $\hat{\alpha}_i : \overline{S}_i \to \mathcal{U}$ by $\hat{\alpha}_i = S_{\lambda_i} \tilde{\alpha}|_{\overline{S}_i}$. Then

$$(\alpha|_{\bar{S}_i})^{\sim} = \tilde{\alpha}|_{\bar{S}_i} = \omega(s_{\lambda_i}\tilde{\alpha}|_{\bar{S}_i}) = \omega\hat{\alpha}_i.$$

Hence by Proposition 3.16 $\alpha | \bar{S}_i$ is inner. Therefore S_1, \ldots, S_n is an open cover of X such that $\alpha |_{\bar{S}_1}, \ldots, \alpha |_{\bar{S}_N}$ are inner and hence α is locally inner. \square

Proof of Theorem 3.5. It follows from Theorem 3.12 that we may define a function

$$\sim$$
: loc-Inn $(\mathfrak{A}) \rightarrow C(X, \operatorname{Aut}(B))$

by $\alpha \to \tilde{\alpha}$.

To show that $\tilde{\ }$ is a homomorphism of abstract groups recall that the group operation on $C(X, \operatorname{Aut}(B))$ is pointwise multiplication. Thus we need only show that for each $x \in X$, α , $\beta \in \operatorname{loc-Inn}(\mathfrak{A})$ that $((\beta \alpha)^{\sim})(x) = \tilde{\beta}(x)\tilde{\alpha}(x)$. But since loc-Inn $(\mathfrak{A}) \subset \operatorname{CF}(\mathfrak{A})$, this follows from Lemma 3.7.

The continuity and openness of ~ are exercises in the use of the compact-open topology.

To prove that ~ is an isomorphism of abstract groups we define a function

$$^: C(X, Aut(B)) \rightarrow loc-Inn(\mathfrak{A})$$

as follows.

Let $\varphi \in C(X, \text{ Aut } (B))$. For any $f \in C(X, B)$ define $\hat{\varphi}(f)(x) = (\varphi(x))(f(x))$, for any $x \in X$. Note that $\hat{\varphi}f$ is the composite

$$X \xrightarrow{\text{diag}} X \times X \xrightarrow{f \times \varphi} B \times \text{Aut}(B) \xrightarrow{e} B$$

and hence is continuous (compare Proposition 3.1). Thus $\hat{\varphi}$ defines a function $\hat{\varphi}: C(X, B) \to C(X, B)$. Direct computation shows that $\hat{\varphi} \in \operatorname{Aut}(\mathfrak{A})$. If $f \in Z(\mathfrak{A})$, then there exists a continuous function $g: X \to C$ such that f = gI. Thus for any $x \in X$

$$(\hat{\varphi}(f))(x) = \varphi(x)(f(x)) = \varphi(x)(g(x)I)$$
$$= g(x)\varphi(x)I = g(x)I = f(x).$$

Therefore $\hat{\varphi}(f) = f$ and $\hat{\varphi} \in CF(\mathfrak{A})$.

For any $B \in B$ and $x \in X$ we have

$$\hat{\varphi}^{\sim}(x)(\mathbf{B}) = \hat{\varphi}(\tilde{B})(x) = \varphi(x)(\tilde{B}(x))$$
$$= \varphi(x)(B).$$

and therefore

$$\hat{\varphi}^{\sim} = \varphi \colon X \to \operatorname{Aut}(B).$$

Hence $\hat{\varphi}^{\sim}$ is a continuous function and therefore $\hat{\varphi} \in \text{loc-Inn }(\mathfrak{A})$ by Theorem 3.12. This defines $\hat{\varphi}$.

Routine calculation shows that

$$^: C(X, Aut(B)) \rightarrow loc-Inn(\mathfrak{A})$$

is a homomorphism of abstract groups.

We have already seen that $\hat{\varphi}^{\sim} = \varphi$ for any $\varphi \in C(X, \text{Aut } (B))$. If $\beta \in \text{loc-Inn } (\mathfrak{N})$ then for any $f \in C(X, B)$, $x \in X$,

$$e_x(f-(f(x))^{\sim})=0.$$

Thus (compare the proof of Proposition 3.16) by Lemma 3.2,

$$(\beta f)(x) = \beta(f(x)^{\sim})(x).$$

Therefore from the definitions of $^{\land}$ and $^{\sim}$ we have for any $\alpha \in \text{loc-Inn}(\mathfrak{A})$

$$(\tilde{\alpha}^{\hat{}}f)(x) = \tilde{\alpha}^{\hat{}}(f(x))^{\hat{}}(x) = \tilde{\alpha}(x)((f(x))^{\hat{}}(x))$$
$$= \tilde{\alpha}(x)(f(x)) = \alpha(f(x))^{\hat{}}(x)$$
$$= (\alpha(f))(x).$$

Therefore $\tilde{\alpha}^{\hat{}} f = \alpha f$ and hence $\tilde{\alpha}^{\hat{}} = \alpha$. Therefore $\hat{\alpha}$ are inverse isomorphisms of abstract groups and the result follows. \square

COROLLARY 3.17. Let X be a compact Hausdorff space, H a Hilbert space, $B = \mathcal{L}(H)$ and $\mathfrak{A} = C(X, B)$. Then there exists a natural isomorphism of topological groups \sim : loc-Inn $(\mathfrak{A}) = C(X, \mathcal{U}/S^1)$; where $\mathcal{U} \subset B$ is the unitary group and $S^1 = Z(\mathcal{U})$.

Proof. This follows from Theorem 3.5 and Proposition 3.13.

COROLLARY 3.18. Let X be a separable compact Hausdorff space, \mathbf{H} a Hilbert space, $\mathbf{B} = \mathcal{L}(\mathbf{H})$ and $\mathfrak{A} = C(X; \mathbf{B})$. Then $\mathrm{CF}(\mathfrak{A}) = \mathrm{loc-Inn}(\mathfrak{A})$.

Proof. This follows from Theorems 3.11 and 3.12.

IV. A special case. In this section we will apply the results of the previous section to the algebra $C(X; \mathcal{L}(H))$ when H is infinite dimensional. We shall need the following remarkable theorem of Kuiper.

THEOREM G (KUIPER [16]). Let **H** be an infinite-dimensional Hilbert space and **U** the unitary group of **H**. Then **U** is contractible in the uniform topology.

NOTATION. If X and Y are topological spaces we denote by [X, Y] the set of homotopy classes of maps $f: X \to Y$. The homotopy class of f is denoted by [f].

If G is a topological group then [X, G] may be given the structure of discrete group by pointwise multiplication (of representatives) of homotopy classes.

Recollection from algebraic topology. If π is an abelian group and n is a positive integer, an Eilenberg-Mac Lane space of type (π, n) is a topological space $K(\pi, n)$ such that

$$\pi_i(K(\pi, n)) = \pi \text{ if } i = n,$$

= 0 if $i \neq n$.

where $\pi_i()$ denotes the *i*th-homotopy group [23].

For example, the circle, S^1 , is a K(Z, 1)-space, where Z is the additive group of integers.

The spaces $K(\pi, n)$ have a natural abelian group structure and thus for any space X, $[X, K(\pi, n)]$ is an abelian group. In fact for any compact space X there is a natural isomorphism [23] of abelian groups,

$$[X, K(\pi, n)] = \hat{H}^n(X; \pi),$$

where $\hat{H}^n(X, \pi)$ denotes the *n*th Čech cohomology group of X with coefficients in π . If X is a "nice" space (for example, a cell complex with the weak topology, i.e. a cw-complex) then

$$[X, K(\pi, n)] = H^n(X; \pi),$$

where $H^n(X; \pi)$ denotes the *n*th singular cohomology group of X with coefficients in π . More precisely, for such nice spaces, Čech and singular cohomologies are naturally isomorphic [28].

If G is a topological group and $p: E \to E/G$ is a principal G-bundle then there is an exact homotopy sequence [23, Theorem 7.2.10], [24, Theorem 17.4],

$$\cdots \longrightarrow \pi_{i}(G) \longrightarrow \pi_{i}(E) \xrightarrow{p_{*}} \pi_{i}(E/G) \xrightarrow{\partial} \pi_{i-1}(G) \longrightarrow \cdots$$

If E is contractible then $\pi_i(E) = 0$ for all $i \ge 0$, and hence

$$\partial: \pi_i(E/G) \to \pi_{i-1}(G)$$

is an isomorphism for all i>0.

We may apply these considerations to the principal S^1 -bundle $\mathcal{U} \to \mathcal{U}/S^1$. Since we have assumed H to be infinite dimensional \mathcal{U} is contractible by the theorem of Kuiper. Therefore

$$\pi_i(\mathcal{U}/S^1) = \pi_{i-1}(S^1)$$

for all $i \ge 1$. Since S^1 is a K(Z, 1)-space we obtain

$$\pi_i(\mathcal{U}/S^1) = Z \quad \text{if } i = 2,$$
$$= 0 \quad \text{if } i \neq 2.$$

Thus \mathcal{U}/S^1 is an Eilenberg-Mac Lane space of type (Z, 2).

NOTATION. Let X be a topological space and G be a topological group. Denote by $C_0(X; G)$ the subgroup of C(X; G) consisting of the null-homotopic maps. If X is compact Hausdorff then $C_0(X; G)$ is just the identity component of C(X; G) with the compact open topology.

 $C_0(X; G)$ is a normal subgroup of C(X; G) and there is a natural isomorphism of discrete groups,

$$C(X; G)/C_0(X; G) = [X, G]$$
 [23].

THEOREM 4.1. Let X be a compact Hausdorff space, H an infinite-dimensional Hilbert space, $B = \mathcal{L}(H)$ and $\mathfrak{A} = C(X; B)$. Then there is a natural isomorphism of groups loc-Inn $(\mathfrak{A})/\text{Inn}$ $(\mathfrak{A}) = \hat{H}^2(X; \mathbf{Z})$. If moreover X is separable, we have the isomorphism of groups

loc-Inn
$$(\mathfrak{A})/\text{Inn}$$
 $(\mathfrak{A}) = \hat{H}^2(X; \mathbb{Z}) = \text{CF } (\mathfrak{A})/\text{Inn } (\mathfrak{A}).$

Proof. By 3.18, loc-Inn $(\mathfrak{A}) = C(X; \mathcal{U}/S^1)$. By Proposition 3.16,

$$\operatorname{Inn}(\mathfrak{A})=p_{\star}C(X;\mathscr{U}).$$

Now we assert that

$$p_{\star}C(X;\mathscr{U})=C_0(X;\mathscr{U}/S^1)$$

where $C_0(X; \mathcal{U}/S^1)$ is the subgroup of $C(X; \mathcal{U}/S^1)$ consisting of the null-homotopic maps.

For suppose $\varphi: X \to \mathcal{U}/S^1$ is null homotopic. Choose a homotopy $\varphi_t: X \to \mathcal{U}/S^1$, $t \in [0, 1]$, with $\varphi_1 = \varphi$ and $\varphi_0 =$ the constant map at $I \in \mathcal{U}/S^1$. Let $\bar{\varphi}_0: X \to \mathcal{U}$ be the constant map at $I \in \mathcal{U}$. Clearly $p\bar{\varphi}_0 = \varphi_0$. Therefore by the covering homotopy theorem there exists a homotopy $\bar{\varphi}_t: X \to \mathcal{U}$ with $p\bar{\varphi}_t = \varphi_t$ for all $t \in [0, 1]$. Let $\bar{\varphi} = \bar{\varphi}_1$. Then $p\bar{\varphi} = \varphi$ and hence $\varphi \in p_*C(X; \mathcal{U})$. Thus $p_*C(X; \mathcal{U}) \supseteq C_0(X; \mathcal{U}/S^1)$.

Conversely if $\varphi \in p_*C(X; \mathcal{U})$ then we may choose $\bar{\varphi} \in C(X; \mathcal{U})$ with $p\bar{\varphi} = \varphi$. Since \mathcal{U} is contractible by Kuiper's theorem, it follows that $\bar{\varphi}$ is null homotopic. Let $\bar{\varphi}_t \colon X \to \mathcal{U}$ be a homotopy with $\bar{\varphi}_0 = \text{constant}$ map at $I \in \mathcal{U}$ and $\bar{\varphi}_1 = \bar{\varphi}$. Then $\varphi_t = p\bar{\varphi}_t$ is a homotopy from φ to the constant map at $I \in \mathcal{U}/S^1$. Thus φ is null homotopic and hence $p_*C(X; \mathcal{U}) \subseteq C_0(X; \mathcal{U})$. Combining this with 3.16 and 3.17 we obtain

loc-Inn (
$$\mathfrak{A}$$
)/Inn (\mathfrak{A}) = $C(X; \mathcal{U}/S^1)/C_0(X; \mathcal{U}/S^1)$
= $[X, \mathcal{U}/S^1]$.

Since \mathcal{U}/S^1 is a K(Z, 2)-space this yields

loc-Inn (
$$\mathfrak{A}$$
)/Inn (\mathfrak{A}) = $\hat{H}^2(X; Z)$

as claimed. Using 3.18 we obtain the case where X is separable. \square

REMARK. E. C. Lance has shown [18] that when X is separable $\pi(\mathfrak{A})/\text{Inn}(\mathfrak{A}) = \hat{H}^2(X; \mathbb{Z})$. Thus we obtain

COROLLARY 4.2. If X is a separable compact Hausdorff space, $\mathbf{B} = \mathcal{L}(\mathbf{H})$ for an infinite-dimensional Hilbert space \mathbf{H} , and $\mathfrak{A} = C(X; \mathbf{B})$, then

$$\pi(\mathfrak{A}) = \mathrm{CF}(\mathfrak{A}) = \mathrm{loc}\text{-Inn}(\mathfrak{A}).$$

Also,

THEOREM 4.3. If X is a separable compact Hausdorff space, $\mathbf{B} = \mathcal{L}(\mathbf{H})$ for an infinite-dimensional Hilbert space \mathbf{H} , and $\mathfrak{A} = C(X; \mathbf{B})$ then $\operatorname{Aut}_0(\mathfrak{A}) = \operatorname{Inn}(\mathfrak{A})$ where $\operatorname{Aut}_0(\mathfrak{A})$ is the identity component of $\operatorname{Aut}(\mathfrak{A})$.

Proof. Let us denote by $C_0(X; \mathcal{U}/S^1)$ and $CF_0(\mathfrak{A})$ the identity components of topological groups $C(X; \mathcal{U}/S^1)$ and $CF(\mathfrak{A})$, respectively. First we want to show that

$$(1) C_0(X; \mathscr{U}/S^1) = \operatorname{Inn}(\mathfrak{A}).$$

By 3.16 we know Inn $(\mathfrak{A}) = p_*C(X; \mathcal{U})$. Also in the proof of 4.1 we saw $p_*C(X; \mathcal{U})$ is null homotopic to $C(X; \mathcal{U}/S^1)$. But it is well known that $[23] f: X \to \mathcal{U}/S^1$ is null homotopic if and only if f belongs to the identity component of $C(X; \mathcal{U}/S^1)$, where $C(X; \mathcal{U}/S^1)$ is equipped with the compact-open topology. Thus Inn $(\mathfrak{A}) = C_0(X; \mathcal{U}/S^1)$, obtaining (1).

Next we note

(2)
$$CF_0(\mathfrak{A}) = Aut_0(\mathfrak{A}).$$

For by [13] and the remark in §II we have

$$\operatorname{Aut}_0\left(\mathfrak{A}\right)\subseteq\pi(\mathfrak{A})\subseteq\operatorname{CF}\left(\mathfrak{A}\right)\subseteq\operatorname{Aut}\left(\mathfrak{A}\right).$$

So CF (\mathfrak{A}) is open, and Aut₀ (\mathfrak{A}) = CF₀ (\mathfrak{A}).

Hence we only have to show Inn $(\mathfrak{A}) = CF_0(\mathfrak{A})$ in order to complete the proof of the theorem. But by Corollaries 3.17 and 3.18 we know that

$$C(X; \mathcal{U}/S^1) = \text{loc-Inn}(\mathfrak{A}) = \text{CF}(\mathfrak{A}).$$

Hence $CF_0(\mathfrak{A}) = C_0(X; \mathcal{U}/S^1)$. But by (1), we obtain

$$CF_0(\mathfrak{A}) = C_0(X; \mathscr{U}/S^1) = Inn(\mathfrak{A}).$$

REMARK. Theorem 4.3 has been obtained by Lance also, see [18].

More generally, when X is not separable we have the following:

If $\mathfrak A$ is a C^* -algebra recall that $\operatorname{Aut}_0(\mathfrak A)$ is the identity component of $\operatorname{Aut}(\mathfrak A)$ in the norm topology.

PROPOSITION 4.4. Let X be a compact Hausdorff space, **H** an infinite-dimensional Hilbert space, $\mathbf{B} = \mathcal{L}(\mathbf{H})$ and $\mathfrak{A} = C(X; \mathbf{B})$. Then Inn $(\mathfrak{A}) \subseteq \operatorname{Aut}_0(\mathfrak{A})$.

Proof. By Proposition 3.15 and Proposition 3.14 ~ induces an isomorphism of topological groups (compare with the proof of Theorem 4.1)

~: Inn (
$$\mathfrak{A}$$
) $\cong p_*C(X; \mathscr{U})$.

By Kuiper's theorem \mathcal{U} is contractible and hence $C(X; \mathcal{U})$ is connected [22]. Therefore $p_*C(X; \mathcal{U})$ is connected and hence Inn (\mathfrak{A}) is connected. Thus we must have Inn $(\mathfrak{A}) \subseteq \operatorname{Aut}_0(\mathfrak{A})$. \square

REMARK. Proposition 4.4 is in striking contrast with the case when dim H is finite. In [13, Example d] it is shown that $\operatorname{Aut}_0(\mathfrak{A}) \subsetneq \operatorname{Inn}(\mathfrak{A})$ when dim H is finite.

Conjecture. If X is a compact Hausdorff space, H an infinite-dimensional Hilbert space, $B = \mathcal{L}(B)$ and $\mathfrak{A} = C(X; B)$ then Inn $(\mathfrak{A}) = \operatorname{Aut}_0(\mathfrak{A})$.

This conjecture is closely related to (and would follow from) the continuity of $\tilde{\alpha}$.

COROLLARY 4.5. Let H be an infinite-dimensional Hilbert space, $B = \mathcal{L}(H)$, and G a finitely generated abelian group. Then there exists a separable compact Hausdorff space X such that $G = CF(\mathfrak{A})/Inn(\mathfrak{A}) = loc-Inn(\mathfrak{A})/Inn(\mathfrak{A})$, where $\mathfrak{A} = C(X; B)$.

Proof. According to Theorem 4.1 we need only construct a separable compact Hausdorff space X with $\hat{H}^2(X; \mathbb{Z}) = G$. However this is well-known algebraic topology [23, Example C.6, p. 206].

COROLLARY 4.6. Let X be a compact Hausdorff space, H an infinite-dimensional Hilbert space, $B = \mathcal{L}(H)$ and $\mathfrak{A} = C(X; B)$. Then loc-Inn (\mathfrak{A}) /Inn (\mathfrak{A}) is abelian. If moreover X is separable then $CF(\mathfrak{A})$ /Inn (\mathfrak{A}) is always an abelian group.

Proof. $\hat{H}^2(X; \mathbb{Z})$ is always abelian. \square

REMARK. Corollary 4.6 is in striking contrast to the situation when H is finite dimensional. For in the finite-dimensional case loc-Inn (\mathfrak{A}) = CF (\mathfrak{A}) and the examples constructed in [13] show that CF (\mathfrak{A}) /Inn (\mathfrak{A}) need not be abelian.

V. Miscellaneous results. In this section we collect various miscellaneous results concerning automorphisms of the C^* -algebras C(X; B).

The C(X)-module structure. Let X be a compact Hausdorff space and B a C^* -algebra. Denote by C(X) the C^* -algebra C(X; C). There is a natural map

$$\mu: C(X) \otimes^* C(X; \mathbf{B}) \to C(X; \mathbf{B})$$

given by the *-linear continuous extension of the mapping

$$[\mu(f \otimes g)](x) = f(x) \cdot g(x) \in \mathbf{B}$$

where $f \in C(X)$ and $g \in C(X; B)$. We denote $\mu(f \otimes g)$ by $f \circ g$. This provides C(X; B) with the structure of an (continuous) algebra over the algebra C(X).

PROPOSITION 5.1. Let X be a compact Hausdorff space, B a C^* -algebra with $Z(B) = C \cdot I$. An automorphism of C(X; B) is center-fixing iff it is an automorphism of C(X)-algebras.

Proof. Suppose $\alpha \in CF(C(X; B))$. Let $f \in C(X)$, $g \in C(X; B)$. Then

$$\alpha(f\circ g)=\alpha((f\circ I)g).$$

Since $f \circ I \in \mathbf{Z}(C(X; \mathbf{B}))$ we obtain in addition

$$\alpha(f \circ g) = \alpha(f \circ I)\alpha(g) = (f \circ I)\alpha(g) = f \circ \alpha(g)$$

and thus α is an automorphism of C(X)-modules. Since it is also a C^* -algebra isomorphism it is an isomorphism of C(X)-algebras.

Next suppose that α is an automorphism of C(X)-algebras. Then α is an automorphism of the C^* -algebra C(X; B). Let $f \in Z(C(X; B))$, then there exists $g: X \to C$ such that $f = g \circ I$ and hence

$$\alpha(f) = \alpha(g \circ I) = g \circ \alpha(I) = g \circ I = f$$

and α is center-fixing as required. \square

Carefully ideal preserving automorphisms.

DEFINITION. Let $\mathfrak A$ be a C^* -algebra. An automorphism α of $\mathfrak A$ is said to be *ideal* preserving iff $\alpha(J) \subset J$ for every closed two sided ideal J of $\mathfrak A$.

An automorphism α of $\mathfrak A$ is said to be *carefully ideal preserving* iff $\alpha(J)=J$ for each closed two sided ideal J in $\mathfrak A$.

In this subsection we study the relation between center-fixing and ideal preserving automorphisms of the C^* -algebras C(X; B).

We will use portions of the theory of §III.

NOTATION. Let $\mathfrak A$ be a C^* -algebra. Denote by $\tau(\mathfrak A)$ the set of all ideal preserving automorphisms of $\mathfrak A$. Note that $\tau(\mathfrak A)$ is only a subsemigroup of Aut ($\mathfrak A$).

Denote by $\tau_0(\mathfrak{A})$ the set of all carefully ideal preserving automorphisms of \mathfrak{A} . Note that $\tau_0(\mathfrak{A})$ is a subgroup of Aut (\mathfrak{A}) [17].

Let X be a compact Hausdorff space and **B** a C^* -algebra. Let $J \subseteq B$ be a closed two sided ideal in **B** and $x \in X$ a fixed point. Define J(x) in C(X; B) by

$$J(x) = \{ f \in C(X; \mathbf{B}) \mid f(x) \in J \}.$$

Then one readily checks that J(x) is a closed two sided ideal in $C(X; \mathbf{B})$. These ideals may be used to describe the general form of the closed two sided ideals in $C(X; \mathbf{B})$. For the proof of the next theorem we refer to [5], [15].

THEOREM H (I. KAPLANSKY). Let X be a compact Hausdorff space and B a C^* -algebra. If $J \subset C(X; B)$ is a closed two sided ideal then there exists a closed subset $S \subseteq X$ and for each $x \in S$ a closed two sided ideal $J_x \subseteq B$ such that $J = \bigcap_{x \in S} J_x(x)$.

PROPOSITION 5.2. Let X be a compact Hausdorff space, B a C^* -algebra, and $\mathfrak{A} = C(X; B)$. If $\alpha \in CF(\mathfrak{A})$ and $x \in X$ then

$$[\alpha(f)](x) = [\alpha(f(x))^{\sim}](x)$$

for all $f \in \mathfrak{A}$.

Proof. Let $f \in \mathfrak{A}$. Then $e_x(f-(f(x))^{\sim})=0$. Thus by Lemma 3.2

$$e_x[\alpha(f-(f(x))^{\sim})]=0.$$

But this is by definition

$$[\alpha(f)](x) - [\alpha(f(x))^{\sim}](x) = 0,$$

and the result follows.

REMARK. This result has been used at several key points in §III and points out the "local" nature of center-fixing automorphisms of C(X; B).

LEMMA 5.3. Let X be a compact Hausdorff space, B a C^* -algebra and $\mathfrak{A} = C(X; B)$. Let $J \subseteq B$ be a closed two sided ideal and $x \in X$ a fixed point of X. Assume in addition that $CF(B) \subseteq \tau_0(B)$. Then for any $\alpha \in CF(\mathfrak{A})$, $\alpha(J(x)) = J(x)$.

Proof. Let $f \in J(x)$. By Proposition 5.2

$$(\alpha f)(x) = \alpha(f(x))^{\sim}(x) = \tilde{\alpha}_x(f(x)).$$

It follows directly from the definition of the function \sim given in §III that $\tilde{\alpha}_x$ is a center-fixing automorphism of B. Since we have assumed that $CF(B) \subseteq \tau_0(B)$ it follows that $\tilde{\alpha}_x(f(x)) \in J$. Therefore $(\alpha f)(x) \in J$ and hence $f \in J(x)$. Thus $\alpha(J(x)) \subseteq J(x)$. But α^{-1} is also in CF (\mathfrak{A}) and hence $\alpha^{-1}(J(x)) \subseteq J(x)$. Applying α to both sides of this latter inclusion gives $J(x) \subseteq \alpha(J(x))$, and hence $\alpha(J(x)) = J(x)$ as required. \square

REMARKS. (1) The hypothesis $CF(B) \subseteq \tau_0(B)$ is often satisfied. For example if $B = \mathcal{L}(H)$, where H is a Hilbert space, then every automorphism of B is inner, and hence carefully ideal preserving. If B has only one closed two sided proper ideal, e.g. B =the C^* -algebra of all compact operators on a Hilbert space H with identity adjoined, then every automorphism of B is carefully ideal preserving.

(2) Setting X= point we see that the assumption $CF(B) \subseteq \tau_0(B)$ is clearly necessary for the conclusion of Lemma 5.3 to hold.

The next proposition provides numerous additional examples of C^* -algebras such that $CF(\mathfrak{A}) \subseteq \tau_0(\mathfrak{A})$.

PROPOSITION 5.4. Let X be a compact Hausdorff space, B a C^* -algebra and $\mathfrak{A} = C(X; B)$. Assume in addition that $CF(B) \subseteq \tau_0(B)$. Then $CF(\mathfrak{A}) \subseteq \tau_0(\mathfrak{A})$.

Proof. It is immediate from Theorem H and Lemma 5.3.

LEMMA 5.5. Let X be a compact Hausdorff space, **B** a C*-algebra, $\mathfrak{A} = C(X; \mathbf{B})$, and $\alpha \in \tau(\mathfrak{A})$. Then for any $f \in \mathfrak{A}$

$$(\alpha f)(x) = \alpha(f(x))^{\sim}(x),$$

for any $x \in X$.

Proof. Let $x \in X$ and set $J = \ker e_x$. Then J is a closed two sided ideal in \mathfrak{A} . Let $f \in \mathfrak{A}$. Then $f - (f(x))^{\sim} \in J$ and since α is ideal preserving $\alpha(f - (f(x))^{\sim}) \in J$, i.e. $\alpha(f)(x) = \alpha(f(x))^{\sim}(x)$, as required. \square

LEMMA 5.6. Let X be a compact Hausdorff space, \mathbf{B} a C^* -algebra and $\mathfrak{A} = C(X; \mathbf{B})$. Let $\alpha \in \tau(\mathfrak{A})$. Then for each $x \in X$, $\tilde{\alpha}_x \in \tau(\mathbf{B})$.

Proof. Let $x \in X$ and $J \subseteq B$ a closed two sided ideal. Let $B \in J$. Then $\widetilde{B} \in J(x)$. By definition of $\widetilde{\alpha}_x$, $\widetilde{\alpha}_x(B) = \alpha(\widetilde{B})(x)$. Since $\alpha \in \tau(\mathfrak{A})$, $\alpha(J(x)) \subseteq J(x)$. Therefore $\alpha(\widetilde{B}) \in J(x)$ and hence $\alpha(\widetilde{B})(x) \in J$. Thus $\widetilde{\alpha}_x(B) \in J$. Hence $\widetilde{\alpha}_x(J) \subseteq J$ as required. \square By applying the identical argument to $\widetilde{\alpha}_x^{-1}$ we obtain

LEMMA 5.7. Let X be a compact Hausdorff space, \mathbf{B} a C^* -algebra and $\mathfrak{A} = C(X; \mathbf{B})$. Let $\alpha \in \tau_0(\mathfrak{A})$. Then for each $x \in X$, $\tilde{\alpha}_x \in \tau_0(\mathbf{B})$.

PROPOSITION 5.8. Let X be a compact Hausdorff space, B a C^* -algebra and $\mathfrak{A} = C(X; B)$. Assume in addition that $\tau(B) \subseteq \mathrm{CF}(B)$. Then $\tau(\mathfrak{A}) \subseteq \mathrm{CF}(\mathfrak{A})$.

Proof. Let $\alpha \in \tau(\mathfrak{A})$ and $f \in \mathbf{Z}(\mathfrak{A})$. Then (since $\mathbf{Z}(\mathfrak{A}) = C(X; \mathbf{Z}(\mathbf{B}))$) $f(x) \in \mathbf{Z}(\mathbf{B})$ for all $x \in X$. Thus for each $x \in X$ we have by Lemma 5.5

$$(\alpha f)(x) = \alpha(f(x))^{\sim}(x) = \alpha_x(f(x)).$$

By Lemma 5.6 $\alpha_x \in \tau(B)$ and hence by our hypothesis on B, $\tilde{\alpha}_x \in CF(B)$. Therefore $\tilde{\alpha}_x(f(x)) = f(x)$. Thus $(\alpha f)(x) = f(x)$ and hence α is center-fixing. Thus $\tau(\mathfrak{A}) \subseteq CF(\mathfrak{A})$.

REMARKS. (1) If $Z(B) = C \cdot I$ then CF (B) = Aut(B) and thus clearly $\tau(B) \subseteq CF(B)$.

- (2) $Z(B) = C \cdot I$ for $B = \mathcal{L}(H)$, H a Hilbert space, or $B = \mathfrak{B}$, the C^* -algebra of all compact operators on a Hilbert space with identity adjoined. Thus our hypotheses are satisfied in these cases.
- (3) Setting X=point shows that the hypotheses on B in Proposition 5.8 are necessary.

THEOREM 5.9. Let X be a compact Hausdorff space, \mathbf{B} a C^* -algebra and $\mathfrak{A} = C(X; \mathbf{B})$. Assume in addition that $\tau_0(\mathbf{B}) = \operatorname{CF}(\mathbf{B}) = \tau(\mathbf{B})$. Then

$$\tau_0(\mathfrak{A}) = \mathrm{CF}(\mathfrak{A}) = \tau(\mathfrak{A}).$$

Proof. Since $\tau_0(B) = \operatorname{CF}(B)$ it follows from Proposition 5.4 that $\operatorname{CF}(\mathfrak{A}) \subseteq \tau_0(\mathfrak{A})$. Since $\tau(B) = \operatorname{CF}(B)$ it follows from Proposition 5.8 that $\tau(\mathfrak{A}) \subseteq \operatorname{CF}(\mathfrak{A})$. Thus we have inclusions

$$\tau(\mathfrak{A})\subseteq \mathrm{CF}\,(\mathfrak{A})\subseteq \tau_0(\mathfrak{A}).$$

Since $\tau_0(\mathfrak{A}) \subseteq \tau(\mathfrak{A})$ by definition, the result follows. \square

REMARKS. (1) The assumption that $\tau_0(B) = CF(B)$ is clearly redundant, for $\tau(B) = CF(B)$ then $\tau(B)$ is a group and as noted previously this implies $\tau(B) = \tau_0(B)$.

(2) Note that the hypotheses on B are satisfied when $B = \mathcal{L}(H)$, H a Hilbert space, or $B = \mathfrak{B}$, the C^* -algebra of compact operators with identity adjoined.

COROLLARY 5.10. Let \mathfrak{A} , **B** be as in Theorem 5.9. Then $\tau(\mathfrak{A})$ is a subgroup of Aut (\mathfrak{A}) . \square

COROLLARY 5.11. Let X be a separable compact Hausdorff space, $\mathbf{B} = \mathcal{L}(\mathbf{H})$ and $\mathfrak{A} = \mathcal{L}(X; \mathbf{B})$. Then

$$\tau_0(\mathfrak{A}) = \mathrm{CF}(\mathfrak{A}) = \tau(\mathfrak{A}) = \pi(\mathfrak{A}).$$

Proof. Immediate from Corollary 4.2, Theorem 5.9 and Remark (1) after Lemma 5.3.

REFERENCES

- 1. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839-873. MR 3, 208.
- 2. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
- 3. ——, Les C*-algèbres et leur représentations, Cahiers Scientifique, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 4. N. Dunford and J. Schwartz, a) Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. b) II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.
- 5. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280. MR 29 #1547.
- 6. L. T. Gardner, On isomorphisms of C*-algebras. Amer. J. Math. 87 (1965), 384-396. MR 31 #3883.
- 7. B. R. Gelbaum, Tensor products and related questions, Trans. Amer. Math. Soc. 103 (1962), 525-548. MR 25 #2406.
- 8. J. Gil de Lamadrid, Uniform cross norms and tensor products of Banach algebras, Bull. Amer. Math. Soc. 69 (1963), 797-803. MR 28 #5353.
- 9. J. G. Glimm and R. Kadison, *Unitary operators in C*-algebras*, Pacific J. Math. 10 (1960), 547-556. MR 22 #5906.
- 10. A. Grothendick, *Produits tensoriels topologiques et espaces nucléaires*, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763.
 - 11. D. Husemoller, Fiber bundles, McGraw-Hill, New York, 1966. MR 37 #4821.
- 12. R. Kadison, Transformations of states in operator theory and dynamics, Topology 3 (1964), suppl. 2, 177-198. MR 29 #6328.
- 13. R. Kadison and J. R. Ringrose, *Derivations and automorphisms of operator algebras*, Comm. Math. Phys. 4 (1967), 32-63. MR 34 #6552.
 - 14.- R. E. Kallman, Private communication (to appear).
- 15. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255. MR 13, 48.
- 16. N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19-30. MR 31 #4034.
- 17. E. C. Lance, Automorphisms of postliminal C*-algebras, Pacific J. Math. 23 (1967), 547-555. MR 36 #3133.
 - 18. ——, Preprint (to appear).
- 19. C. E. Rickart, The uniqueness of norm problem in Banach algebras, Ann. of Math. (2) 51 (1950), 615-628. MR 11, 670.
- 20. ——, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
 - 21. S. Sakai, Theory of W*-algebras, Mimeographed Lecture Notes, Yale University, 1960.
- 22. R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 12, 186.

- 23. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.
- 24. N. E. Steenrod, *The topology of fibre bundles*, Princeton Math. Series, vol. 14, Princeton Univ. Press, Princeton, N. J., 1951. MR 12, 522.
- 25. M. Takesaki, A note on the cross-norm of the direct product of operator algebra, Kōdai Math. Sem. Rep. 10 (1958), 137-140. MR 20 #6666.
- 26. T. Turumaru, Crossed product of operator algebra, Tôhoku Math. J. (2) 10 (1958), 355-365. MR 21 #1550.
- 27. A. Wulfsohn, *Produit tensoriel des C*-algèbres*, Bull. Sci. Math. (2) **87** (1963), 13-27. MR **29** #5121.
- 28. E. C. Zeeman, Dihomology. I: Relations between homology theories, Proc. London Math. Soc. (3) 12 (1962), 609-638. MR 27 #2980a.

Institut des Hautes Études Scientifiques, Paris, France University of Virginia, Charlottesville, Virginia 22901